01 Overview

..Early computer languages were Command Line languages. A user
wrote a program, compiled it, And ran the EXE from the Command
Line (DOS prompt - C: \). If a visual Interface (such As a display graph Or location To Type
In information) was needed, the user had To Write the code To manipulate every
pixel On the screen that was needed To create the display.

Visual Basic greatly simplified this process by providing the capability
To create user Interface items (windows, buttons, textboxes, etc.) easily
using just a mouse. All of the code For the user Interface Object was pre - written And
stored In "runtime" files, which handled the details of interfacing With
the Windows OS. All a user had To Do was draw the button And
Write the code To respond To events such As a mouse click Or the
pressing of keys On the keyboard.

VB3 was the first version To achieve popularity. VB6 has been the most popular
of all And Is still used by more programmers than the most recent edition - VB.net.

Another key feature of VB Is that it uses an Event - driven model. When a VB program
starts it goes through some initialization And Then basically waits For an Event To occur.
Events are such things are mouse clicks Or button presses by the user. A VB program
consists primarily of the code which responds To these events.
02 Sample code

Sub Command1_click

'create a new VB program with a single window and a single button
'put the line below in the button click event . The line is executed when the button is pressed
'MsgBox Is a built-In VB function which pops up a window with the specified text

MsgBox "Hello world!"

End Sub
03 IDE

..VB comes With a graphical inteface For entering And executing
code (some languages still use the command line). The Interface
Is called the Integrated Developement Environment (IDE)

The IDE And compiler are integrated.

The basic Function of the IDE Is To provide a text editor For
writing your code.

The second basic Function of the IDE Is To allow you To run your
program immediately (simply press F5), without first having To
compile your program.

The third primary Function of the IDE Is To allow your To compile
your program.

VB 's IDE allows you to open one or more projects or to combine
projects into groups.

The IDE also manages the addition / deletion of forms, modules
And Class files To your projects.

The IDE provides some other very key features:
1. code editor With syntax highlighting
2. Intellisense (displays possible options To finishing a line of code)
3. programs can be executed immediately from the IDE
4. programs can be compiled To create an EXE For later execution
5. debug features, including Step - by - Step execution of a program
6 expression watches, where you can pause When specified conditions are met
04 Syntax

'VB code is written one line at a time, A line of code is called a statement. (Not all languages
'recognize the end of a line as the end of a statement).

MyString = "hello"

'There are two variations on the rule of one line per statement:
'1. The underline character can be used to allow a long line of code to span multiple physical lines (simply a visual aide)
MyString = "the boys are about" & _
"where we want them"

'2. A colon can be used to put two or more statements on a single line
MyString = "hello" : YourString = "goodbye"

'VB allows the placement of comments in a line - comments are descriptive text which
'will be ignored during execution of the program. Comments are usually shown in
'the IDE as green-colored text. There are two ways to comment code:

'1. start the line with 'REM'
Rem this is a comment line

'2. all code to the right of an apostrophe is treated as a comment
My String = "hello" 'comments go here
05 Data types / variables

VB, Like most programming languages, stores information In multiple
formats. The basic Data types supported by VB are:

'Integer whole numbers -32,768 to +32,767 2 bytes
'Long whole numbers -2,147,483,648 to +2,147,483,647 4 bytes
'Single numbers with decimal points -1.4E-45 to +3.4E38 4 bytes
'Double numbers with decimal points -4.9E-324 to 1.8E308 8 bytes
'Boolean value of True or False only
'Strings sequences of characters, such as "abc123"
'Byte single character 0 to 255
'Date includes date and time
'Variant any type from the list above

'Variables are names assigned to store values. Variable naming rules are:
'1. Start with a letter
'2. Consist of letter, numbers, or an underscore '_'
'3. Cannot exceed 255 characters

'To create a variable of a certain type, use the Dim function

Dim MyString As String
MySring = "abc"

Dim Y As Integer
Y = 2

'VB also supports a user-defined type (UDT), which is a combination
'of the other types

Type Address
 Address As String
 City As String
 State As String
 Zip As String
End Type

Dim R As Address
R.Address = "101 Clover Lange"
R.City = "Tulsa"
R.State = "OK"
R.Zip = "72310"

'These VB function are available to convert 1 data type into another
Cbool (expression)
CByte (expression)
CCur(expression)
CDate (expression)
CDbl (expression)
CDec (expression)
CInt (expression)
CLng (expression)
CSng (expression)
CStr (expression)
CVar(expression)

06 Operators

'VB supports the following operators

'Arithmetic
+ addition For numbers
- substraction
/ division
\ Integer division, discards the Decimal part of the answer
* multiply
^ exponentiation
Mod division, returning only the remainder

'Comparison
= equal
< less than
> greater than
<> Not equal
>= greater than Or equal To
<= less than Or equal To
Is two variables / objects are the same
Like variable matches a pattern

'Concatenation
& combines two strings into one
+ combines two strings into one (Is addition for numbers)

'Logical
And logical conjunction (both values True)
Or logical disjunction (either value True)
Not logical negation (reverses True / False value)
Xor logical exclusion (True If one, And only one, Is True)
Imp logical implication (e9e9
Eqv logical equivalence (True If both have same logical value)
07 Boolean logic

'Boolean refers to logical relationships - True or False, and is named
'after mathematician George Boole.

'VB supports the following Boolean opertors
Or
And
Not
Xor

'The following operators are also supported but see very little use by VB programmers
Eqv
Imp
Is

'To create a Boolean variable, use this:
Dim X As Boolean

'Mathematical values used in Boolean expresssion are converted to Boolean values as follows:
0 becomes False
all other values become True .

'Boolean values used in mathematical expressions are converted to mathematical values as follows:
False becomes 0 i.e. False * 2 = 0
True becomes - 1 i.e. True * 5 = - 5

'results of applying Val to Boolean
Val(True) = 0
Val(False) = 0
Abs(True) = 1
Abs(False) = 0
CInt (True) = - 1
CInt (False) = 0
Print True ---> True
Print False ---> False

If A Then
 '0 value is treated as False
 'non-zero value is treated as True
End If
08 Strings

' "abc" is a String consisting of the three letters a, b, and c

'a string variable is assigned content as follows:
mystring = "abc"

'two strings can be merged with the & operator
mystring = "abc" & "def" = "abcdef"

'VB has really wide range of functions that perform string operations
Left 'returns # of characters at left of string
Right 'returns # of characters at right of string
Trim 'removes spaces from both ends of a string
LTrim 'removes spaces from left side of a string
RTrim 'removes spaced from right side of a string
Ucase 'make entire string upper case
Lcase 'makes entire string lower case

Mid 'returns any or all of a string (substring)
Chr 'returns string character associated with an integer (see Ascii values)
Asc 'returns Ascii integer value of a single character
Len 'retruns the length of a string (number of characters in the string)

Lset 'left justifies a string in a string of specified width, padding with spaces as needed
Rset 'right justifies a string in a string of specified width, padding with spaces as needed

String 'retuns a string consisting of a character, repeated a specified number of times
Space 'returns a specified number of spaces

InStr 'finds position of one string inside a larger string (position defined as starting from the left of the string)
InStrRev 'finds position of one string inside a larger string (position defined as starting from the right of the string)
Like 'compares two string and returns a Boolean result
Replace 'replaces a part of a string with a specified replacement string
Join 'joins the elements of an array into a single string, separated by a specified delimeter
Split 'separates a string into an array. separation is made at a specified delimeter

StrComp 'compares two strings for equality - with various options
StrReverse 'reverse the order of characters in a string
StrConv 'converts a string to various formats (upper, lower, proper, ...)

Format 'formats an expression to a user-define format. format is defined by a string
FormatCurrency 'formats a number as currency
FormatDateTime 'formats an expression as date and time
FormatNumber 'formats a number with various options
FormatPerCent 'formats a number as a percent
09 Arrays

'Arrays are variables which hold multiple values. Each of the values is indexed.

'Declare an array with Dim
'Arrays default to a lower bound of zero but the user must specify the upper bound

Dim MyArray(5) As Long '6 elements, 0-6

'Users can define the upper/lower bounds
Dim MyArray(1 To 15)
Dim MyArray(- 10 To 10)

'Arrays can have multiple dimensions
Dim MyArray(5,5)
Dim MyArray(1 To 10, 1 To 50)

'Arrays whose dimensions are set with Dim are fixed-size arrays. The dimensions
'cannot be changed.

'Arrays whose dimensions can be changed are called dynamic arrays.
'They are declared with ReDim and later dimensioned again, as often as needed
Redim MyArray() 'dynamic array

'then later in code:
Redim MyArray(15) 'the dimensions can be changed at any time to any value

'ReDim loses values in the array unless Preserve is used
Redim Preserve MyArray(15)

'Control arrays
Variables can contain objects, such As textboxes Or pictureboxes, And VB supports
arrays of objects As well.
10 Conditional flow

'VB offers 6 basic methods of flow control

1. For ... Next
2. If ... Then
3. Select Case ... End Select
4. While ... Wend
5. Do ... Loop
6. Goto

'For ... Next =================================
For i = 1 To j Step k
 ...
Next i

'Example
For i = 1 To 10
 Print i
Next i

'If ... Then =================================
If (expression) Then
 ...
ElseIf (expression)
 ...
Else
 ...
End If

'Example
If j > 6 Then
 Print "big"
ElseIf i <> 32
 Print "hello"
Else
 Print "none of the above
End If

'Select Case ... End Select =================================
Select Case (expression)
 Case (variable list)
 Case (variable list)
 Case Else
End Select

'While ... Wend =================================
While (expression)
 ...
Wend

'Do ... Loop =================================
Do While | Until (expression)
 ...
Loop While | Until (expression)

For Each (variable) In (Collection)
Next

'Example
Do While j < 10
 j = j + 1
 Print J
Loop

'Example
Do
 j = j + 1
 Print J
Loop Until j = 25

'GoTo =================================
Goto Line

'Example
Goto Start 'skips the next two lines
j = j + 1
Print j
Start:
Print j
11 Scope

'Scope ---

'The scope of a variable defines which parts of your program are aware of
'the variable. When you declare a variable within a procedure (sub/function)
'only code within that procedure can access or change the value of that variable.
'The variable's scope is local to the procedure.

'Scope of a variable can be controlled by the programmer. Variables are
'declared in one of two locations - procedures or modules. In each case,
'VB allows the declaration to define the procedure as Private or Public:

'Procedure-level variables
 Private 'variables are private to the procedure
 Public 'n/a. procedure variables cannot be Public
'Module-level variables
 Private 'variables are private to the module
 'they can be accessed from within any procedure in the module
 Public 'variables are available to all modules

'Example: to make a public variable, put this in the declaration section of a module
'Note: Public replaces Dim in the declaration

Public MyVar As Long

'Example: to make the same variable private to the module, use this:

Private MyVar As Long

'Lifetime ---

'Normally, when a variable is declared in a procedure (sub/function) it exists only as long
'as the procedure is executing. For example:

Sub MySub ()
 Dim j As Long
 j = 5
End Sub

'When the program call MySub, the variable j is created. When the program exits
'MySub the variable i no longer exists.

'The exception is that if the declaration uses the keyword Static, the variable continues
'to exist between calls of the procedure:

Sub MySub()
 Static Dim j As Long
 i = j + 5
End Sub

'In this example, the value of j is kept. Each time the procedure is called, j is incremented
'by an additional 5.

'These comments apply to module variables also
12 Functions / subroutines

'VB supports two kinds of functions - Subroutines and Functions
'Both allow passing variables to the Sub/Function for use

'Subroutines execute code and return control of program to calling point
Sub MySub ()
 Print "Hello"
End Sub

'Functions execute code, return a value to the program and return control of program to calling point
Function MyFunction () As String
 MyFunction = Date
End Function
'usage
MyString = MyFunction 'Date is placed in MyString

'Passing variables - Sub declaration defines data type of passed variable
Sub MySub (i As Long , s As String , a() As Variant)
 Print i
 Print s
 Print a(5)
End Sub

'Passing variables - Sub declaration defines how passed variables are treated
'ByVal cannot alter the passed variable
'ByRef can alter the passed variable
Sub MySub (ByVal i As Long , ByRef s As String)
 i = 5 'the original variable passed has not changed - ByVal
 s = 10 'the original variable passed is now changed - ByRef
End Sub
13 Files / Folders

'Files ===========================
'VB can access files as text or as binary data
' generally text files are separated into lines - string data followed by a pair of LF+CR characters
' binary files have no such LF+CR separator

'basic functions
Name rename a file
Kill delete a file
FileCopy copy a file To a New location
FileLen Get length of a file In bytes
FileDateTime Get Date / Time file was last modified
GetAttr Get Readonly / system / hidden / directory / archive Attribute of a file Or folder
SetAttr Sets Readonly / system / hidden / archive Attribute of a file Or folder

'Open - most important VB function for reading and writing files
' files can be opened in 4 modes - append, binary, input, output, random

'Input - error if file does not exist
Open "myfile.txt" For Input As #1
 Line Input #1, temp 'read a line of text at a time
 Input #1, a,b,c 'reads list of variables
Close #1

'Example of reading text file from start to end
Open "myfile.txt" For Inpu As #1
While Not EOF(1)
 Line Input #1, temp
Wend

'output - creates file if it does not exist. erases the file before creating it.
Open "myfile.txt" For Output As #1
 Print #1, "information" 'prints data into file. auto-inserts LF+CR
 Write #1, "dog" , "cat" 'prints data into file. quotes around strings, commas between items. auto-inserts LF+CR
Close #1

'binary -
Open "myfile.txt" For Binary As #1
 Get #1, 32, i
Close #1

'append - text mode. write only. writing starts at end of file
Open "myfile.txt" For Append As #1
 Put #1, 128, j
Close #1

'random - reads fixed lenght data, but may be text or binary
Open "myfile.txt" For Append As #1
 Get #1, 32, MyUDT 'reads the 32nd fixed-length record
Close #1

'Folders========================
'basic functions
ChDir Change directory
MkDir Make directory
RmDir Remove directory
ChDrive Change drive
CurDir Return current directory
14 System functions

'This tutorial covers the Windows Registry and Environment variables

'Registry -VB can access registry information at:
'HKEY_CURRENT_USER\Software\VB and VBA Program Settings\appname\section\key\value

'A registry entry includes a reference to the program, a section, a key, and a value. Windows supports
values of String , Binary, Or DWORD Type , but VB only supports String key values. VB Registry functions are:

GetSetting 'gets a value from a section\key
SaveSetting 'saves a value in the registry for a section\key
DeleteSetting 'deletes a section or key
GetAllSettings 'returns all key/values pairs from an application\setting of the Registry

'The Registry is a database of most Windows settings, as well as those for your installed applications.

'In Windows 95, 98, and Me, the Registry is contained in two hidden files in your
'Windows directory, called USER.DAT and SYSTEM.DAT.

'In Windows 2000 and Windows XP, the Registry is stored in several Hives (special files), located
'in the \windows\system32\config and \Documents and Settings\{username} folders.

'Windows 2000 and WIndows XP have five main branches:
'- HKEY_CLASSES_ROOT - contains all of file types as well as OLE information for OLE-aware applications.
'- HKEY_CURRENT_USER - points to the part of HKEY_USERS appropriate for the current user.
'- HKEY_LOCAL_MACHINE - information about all of the hardware and software installed on your
'- HKEY_USERS - preferences (such as colors and control panel settings) for each of the users of the computer.
'- HKEY_CURRENT_CONFIG - the part of HKEY_LOCAL_MACHINE appropriate for the current hardware configuration.

'Registry Editor
'Windows includes a program called the Registry Editor (regedit.exe) which allows
'you to view and edit the contents of the Registry.

'Registry Patch
'A Registry patch is a simple text file with the .REG extension that contains one or more keys
'or values. If you double-click on a .REG file, the patch is applied to the registry. You can
'create a Registry patch by opening the Registry Editor, selecting a branch, and choosing
'Export from the File menu.

==

'Environment variables
MyString = Environ("PATH") 'returns the Windows Path spec

'Environment variables are strings that contain information such as
'drive, path, or file name. They control the behavior of various programs.
'For example, the TEMP environment variable specifies the location in
'which programs place temporary files. The PATH environment variable
'determines the path(s) where Windows will look for executable files.
15 Graphics

'VB has limited graphics capabilities. Most serious graphics work is done using Windows API

'Coordinate system

'Graphical controls (cannot appear on top of other controls, cannot receive focus, cannot
'serve as containers and do no have an hWnd property):
'Image
'Line
'Shape

'Pictures can be displayed on:
'form
'picturebox
'image control

'Graphics methods
.Cls 'clear a drawing area
.PSet 'sets color of a pixel at a specified point
.Point 'returns color value at a specified point
.Line 'draws line between two coordinates (also draws box)
.Circle 'draw circle of radius about a specified point (can also draw arcs or ellipses)
.PaintPicture 'draws a picture on a form, picturebox, or printer

'These properties affect the way graphics methods appear:
.FillStyle
.FillColor
.DrawWidth 'width of lines
.BorderWidth 'width of outline on line and shape controls
.DrawStyle 'set solid or broken pattern for lines
.DrawMode 'defines what happend when one pattern is drawn on top of another

'Colors
'color is a Long integer from 0 to 16,777,215 (&HFFFFFF&)
'color is represented by red, green and blue content - each with a value of 0 to 255
'RGB function is used to set colors using RGB content

iColor = RGB (R, G, B) 'R,G,B have values 0 to 255. (0,0,0) is black. (255,255,255) is white.
iColor = QBColor (i) 'i = 0 to 15, corresponding to VB color constants

'represent color by this syntax (Note: this is reversed from standard Internet color syntax):
iColor = &HBBGGRR& 'where BB is blue, GG is green, and RR is red content

'Non-displayed pictures
'VB offers a Picture object for loading pictures which do not need to be displayed
'The Picture object is convenient for creating animation sequences by using an array of Picture objects

Dim MyPicture As Picture
Set MyPicture = LoadPicture("mypicture.bmp")
16 Sound

'VB has only 1 intrinsic support of sound - the Beep function

Beep 'emits a short mid-frequency sound

'The frequency and duration of the beep depend on your hardware
'and system software, and vary among computers.

'To employ sound in a VB application the Windows API are used
17 Date-Time

'VB supports a Date data type
Dim D1 As Date , D2 As Date
NumberDays = D2 - D1 'subtracting dates gives days (Single data type)

'Functions
iResults = Second(DateVar) 'returns 1-59
iResults = Minute(DateVar) 'returns 1-59
iResults = Hour(DateVar) 'returns 1-23
iResults = Day(DateVar) 'returns 1-31
iResults = Month(DateVar) 'returns 1-12
iResults = Weekday(DateVar) 'returns 1-7
iResults = Year(DateVar) 'returns 4 digit year

'Set time/date
Time = TimeString
Date = DateString

'Get time/date
DateVar = Date
TimeVar = Time

'Time Operations
DateAdd
DateDiff
DatePart

'Time Functions
DateSerial
DateValue
TimeSerial
TimeValue
18 Math

'VB normally operates in decimal notation, but hexadecimal (base 16)
'and octal (base 8) can also be use

'decimal
MyVar = 25.2

'hexidecimal
MyVar = &H14A

'octal
MyVar = &O37

'VB support the following mathematical functions

'Base conversions
Hex 'returns Hex string representation of a number
Oct 'returns Octal string representation of a number
Val 'returns content of string converted to a number

'Controlling number of decimals in a number
Round
Int 'returns integer portion of a number. if negative, returns first negative integet <+ to the number
Fix 'returns integer portion of a number. if negative, returns first nteger greater than or equal to number

'Mathematical formula
Sin 'sine
Cos 'cosine
Tan 'tangent
Sqr 'square root
Abs 'absolute value
Atn 'arctangent
Log 'logarithm to the base 10

'related random variables
Rnd 'random number between 0 and 1
Randomize 'seeds the Rnd function so that it doesn't return the same value each time a program runs

Sgn 'sign of a number 1 for > 0, 0 for 0, -1 for < 0
Partition 'returns a string indicating where a number occurs within a calculated series of ranges

'These functions are available to convert one data type to another
19 Printing

'VB allows printing to 3 objects within a program
'1. Printer
'2. Picture controls
'3. Forms

Printer. Print "hello"
picture1. Print "hello"
form1. Print "hello"

'printer/picture/forms support key properties which affect where the printing
'takes place and how it look
.CurrentX 'starting X position
.CurrentY 'starting Y position
.ScaleMode 'values are twips, points, pixels, inches, cm, mm, character
.ScaleLeft 'coordinate at left of object
.ScaleTop 'coordinate at top of object
.ScaleWidth 'width of object
.ScaleHeight 'height of object

'Printing starts at x,y coordinates 0,0, or whereever set with .CurrentX and .CurrentY properties
Printer.CurrentX = 1000
Printer.CurrentY = 3000

'Exact set of properties available depends on the printer driver supplied by the printer manufacturer

'To end printing on a page and start a new page use (does not apply to forms/pictures)
Printer.NewPage

'To end printing on a document and eject the page use (does not apply to forms/pictures)
'VB automatically calls this when a program ends, if there is content in the print buffer
Printer.EndDoc

'VB supples a special method to print the entire content of a form
form1.printform

'When within the IDE, printing can also be in these two locations, but with no positioning control
'Debug window
'Immediate window
20 Error handling

'Uncaught errors will halt execuation of VB code (crash)
'To catch (handle) and error use on of these code techniques

'When an error occurs, VB sets the err object, which has these properties
'these are reset after Exit Sub, Exit Function, Exit Property or Resume Next statements
.Clear 'clears the err object
.Description 'text description of the error
.HelpContext 'context ID for a topic in a Help file. Read/write.
.HelpFile 'full path name of Help file
.LastDllError 'return value of last DLL call where an error was returned
.Number 'number assigned to this error (default property)
.Raise 'use in run-time to generate an error for testing error-handling code
.Source 'name of object that generated the error

'Enable error trapping this way:
On Error Goto Label
... normal code goes here
Label: 'this is where execution branches to when an error occurs
.... Error - handling code goes here

'To get out of an error-handling routine, use one of these
Resume [0] 'repeats the error-causing statement (use when the cause of error has been corrected)
Resume Next 'resumes at the statement immediately following the one that caused the error
Resume line 'resumes at the specified label (must be in same procedure as the error handler)
'Generally, use Resume[0] when the error gets corrected and Resume Next when it does not

'To disable error trapping use this line of code:
On Error Goto 0

'The VB IDE has special tools for debugging/controlling errors
'Breakpoints lines of code there the IDE pauses execution
'Step Into execute next line of code, including when the next line is in a procedure
'StepOver execute next line of code, without stepping into a procedure
'StepOut executes the current procedure and stops at the next line in the calling procedure
'Locals Windows displays the current value of local variables
'Immediate Window run code while application is in break mode
'Watch Window displays value of selected expressions
'Quick Watch list current value of expression while application is in break mode
'Call Stack in break mode, lists all procedures that have been called but not yet run to completion
21 Controls

.. As part of its graphical Interface , VB allows the programmer To build
simple Interface objects, such As textboxes, buttons And checklists
by simply drawing them With a mouse.

The objects are called controls. VB comes With 20 built - In (intrinsic)
controls. These 20 are part of the VB run - time files.

01 ADO Data Control acts As Interface between database And other databound controls
02 Checkbox status Is checked Or Not checked
03 ComboBox combination of a textbox And a listbox
04 Command Button press a button To execute a block of code
05 DirListBox DirList / DriveList / FileList work together To naviate folder Structure of Windows
06 DriveListBox DirList / DriveList / FileList work together To naviate folder Structure of Windows
07 FileListBox DirList / DriveList / FileList work together To naviate folder Structure of Windows
08 Frame Container For holding other controls
09 Horizontal Scroll Bar slider For adjusting values
10 Image displays a picture
11 Label displays text, edit In code only
12 Line simple graphics control To display a line of various formats
13 ListBox vertical list of text strings, Each accessible by code
14 OLE Container can use To add objects from other applications, such As an Excel worksheet
15 Option Button only 1 of a group may be selected at a time
16 Picturebox displays a picture, text / graphics can be drawn On it,
17 Shape simple graphics control To display basic shapes (square, circle)
18 Textbox basic text entry, can be multiline, text can be highlighted
19 Timer creates an Event over a user - defined interval
20 Vertical Scroll Bar slider For adjusting values
22 Objects

'Objects are a combination of code and data which you can treat as a single item.

'The controls VB allows you to draw on a form are objects, are as the forms themselves.

'Properties, Methods, and Events
'All objects share a common way of accessing the data and code that we've said make up an object.

'The data inside an object is known as the properties of the object. In familiar terms, it corresponds
'to the values of variables which are stored inside the object. For example, all objects have names.
'The name is one of the properties of the object and the way that you access a property in code is as follows:

MyString = ObjectName.Name

'All properties of objects work exactly the same way, using what is called the "dot" notation. Here are some more examples:

h = Form1.height
w = listbox1.fontname
r = textbox.backcolor
g = timer1.interval

'In each of these examples, a variable on the left is assigned the value of the property on the right.
'The format for identifying the property name is also done the same in every case - "objectname.propertyname".

'Typically, whoever creates the object "exposes" properties which you can access. In the VB IDE
'environment you can click on a control and the properties box (press F4) will display all of the property
'names along with possible values for those properties. Object properties are just like variable in that they
'can have a type. They can be integer, string, dates, or any other VB data type. So remember when
'assigning property values to variables that the VB rules for type conversion must be taken into consideration.

'When in the IDE code windows, VB also provides a big help in remembering the properties of an object.
'Once you've typed in the object name and the ".", VB will display a dropdown listbox which give all of the
'available properties. This features is called Intellisense.

'Two other nuances about properties will be of interest. First of all, not all properties of an object
'are "exposed" for use in your VB program. When we get around to creating our own objects in
'code, you'll find that you can choose whether to expose a property for use in code, or whether
'to keep it hidden within the object (so as not to allow its value to get changed).

'COM & Exposed Objects
'One of the key features about objects is that they can be made available outside of an application for
'use by other programmers. Making an object available for use is known as "exposing" the object.
'Many of the major applications such as Word or Excel expose objects for your use. Microsoft has
'established a standard known as COM (Common Object Model) which guides programmers through
'the techniques of exposing objects from within their applications.

'Exposed objects cannot, however, be distributed with your application. If you plan to create an
'application which uses exposed objects from a second application, then your user must have
'that second application installed on his PC. This is not a trivial problem. Unless you have some
'control over the user's environment you'll find it best to distribute stand-alone applications - ones
'which do not assume that any particular software is resident on your user's PCs.

'All controls, whether in the form of ActiveX Controls (.OCX files) or in the form of exposed objects,
'must be registered with Windows (as part of the Registry) before your VB program can use the
'object. In the VB IDE you can call up the Components Dialog Box which will list all of the objects
'(ActiveX files or exposed objects) thtat are available for your use. If you select one of the objects
'for use, the object will appear on your VB IDE toolbox and can then be used just like any of the
'intrinsic controls that you have already used.

'There is a utility called regsvr32.exe that comes with Windows which you will find very useful.
'Regsvr32 allows you to manually register an OCX in the registry. The need to do this manually
'can arise for a variety of reasons, but mostly because an installation program failed to automatically
'make the registration. The code to register an OCX file is:

regsvr32 filename.ocx

'You can do this from a DOS command line or through the Start/Run menu option.

'Classes
'We're just about to get into the How of creating objects, but one more topic needs discussion
'first. Before an object can be created, an object template must first be created. Once that
'template is created a copy can be created. It's the copy with which you will work in your VB programs.

'In VB terminology, the template is called a class and the copies of the template are called
'instances. In the registration process that we just discussed, it is the template, or class, of an
'object that gets registered with Windows.

'Object Browser
'VB provides a tool with which you can browse all registered objects, including the properties
'and methods which they expose. The Object Browser window can be displayed by pressing
'F2 within the VB IDE. One advantage of the Object Browser over the properites window is
'that the browser can show both properties and methods of the registered classes. Additionally,
'the browser shows all registered objects, including the objects exposed by applications that
'you have installed on your PC. It's the poor man's documentation of all usable classes on your PC!

'Creating Objects - References, Class Modules, & Collections
'You can create objects at both design time and run time. Controls, forms, and class modules
'are examples of objects which you can create at design time (within the VB IDE). You can also
'create controls and form objects at run time, as well as creating variable objects and collections
'at run time. We'll cover these topics next in the tutorial.

'References
'It is possible use the DIM function to create a variable whose type is that of any registered
'class. To do so, use this code:

Dim X As ListBox

'Variables which have been defined as an object type are useful because they can be made
'to refer to an existing object. For example, this code, when used with the line of code just given,
'associates X with the ListBox1 control.

Set X = ListBox1

'Notice the use of the Set statement? To establish a variable reference to an object, you
'cannot simply use the equal sign. You must use the SET statement.

'There are several reasons why you should be interested in creating a second reference to a control.

'First of all, once the variable is set to reference the control, all of the control's properties
'and methods and be accessed as follows:

X.name
Is the same As
ListBox1.name

'If nothing else, using variables rather than the full name of the control can save you some
'typing as you write your code.
23 Databases

..
With over half of all VB programs involved In database management of some kind,
you have To feel obligated To understand VB 's capabilities in that area.

Databases can come In various formats - Access, text files, Excel files, custom binary formats.

Usually, however, When one speaks of databases the reference Is To information stored In
the Access Data Format - files that end In .mdb.

With VB you can create database objects using code Or you can utilize one of several
databbound controls which can greatly simplify your access To the contents of a database.

The penalty you pay For using databases In your program Is a tremendous growth In the
program size - a minimum of 5MBytes For just putting a Single control On your form. Also,
database operations In VB can be noticeably slow. Finally , unlike a simple text database,
Access database files cannot be edited directly.

These penalties have To be traded off against the simplicity With which VB allows you To
access / edit database content.

Controls
Database access In VB begins With the Data control. Set the file And table properties
And all you have To Do Is To bind fields To other controls For display Or edit. Of VB 's
intrinsic controls, the following can be bound To the datacontrol, automatically showing
one of more fields In a database table.
- textbox
- label

As far As basic terminology goes, databases contain tables, which are collections of
Data arranged In rows And columns. Rows are called records And columns are called
fields. Databases can also contain queries, table relationships, validation criteria And more.

A Recordset Is simple a group of records from a database. Usually, a recordset Is
thought of As a subset of all records In a tables, although As we will see, records
can also be made up of Data from more than one table. Records In a recordset are
In no particular order unless a user takes an action To Put them In an order.

Also, a recordset Is a temporary copy of information from the databset. Once created, Or
edited, it must be saved into the database To be permanent.

Actually, there are 5 types of recordsets which VB can create from a database, having
To Do With where the Data can come from, how you can navigate through the records, And
whether you can edit the Data In the recordset. Learning which recordset To use In a
particular application requires an understanding of the capabilities And limitations of Each .

- Table - Type Recordset
Basically a complete table from a database. You can use To add, change, Or delete records.

- Dynaset - Type Recordset
The result of an SQL query that can have updatable records. You can use To add, change,
Or delete records. It can contain fields from one Or more tables In a database.
Provides worse performance than a Table - Type recordset.

- Snapshot - Type Recordset
A Read - only Set of records that you can use To find Data Or generate reports. Can contain
fields from one Or more tables In a database but can 't be updated. Uses a minimum of resources
And provides fast performance.

- Forward - only - Type Recordset
Identical To a snapshot except that no cursor Is provided. You can only scroll forward
through records. This improves performance In situations where you only need To make
a Single pass through a recordset.

- Dynamic - Type Recordset
A query result Set from one Or more Base tables In which you can add, change, Or delete
records from a row - returning query. Further, records other users add, delete, Or edit In the
Base tables also appear In your Recordset.

While they all have their place, it 's my experience that the first three are the most useful.

ADO (ActiveX Data Objects) Is the current technology which Microsoft offers To access
databases. It was preceded by DAO And RDO.

VB Data Controls
The concept of a Data control Is pretty simple. You Set the .DataBaseName Property To
tell the Data control which database file To Read . Then you Set a .RecordSource Property
To tell it which table within the file To make available As a recordset To other controls.
As I 've mentioned earlier, you can also create recordsets which are combinations of one
Or more tables by setting the .RecordSource Property To an SQL statement.

Then , For Data - aware controls such As a textbox, Set the .DataSource Property To the Data
control And the .DataField Property To the specific field within the table / recordset that you
want bound To the control. At that point the bound controls will display the information from
the chosen field of the recordset. Edits made To the Data can be saved by either using the
Data control To move To a New record Or by executing the .Refresh method of the Data control.

There are two Data controls provided by VB
- Data control (intrinsic version)
This Is the original, intrinsic version of the control. It supports the JET database engine And can satisfy most beginners ' needs.

- ADO Data control (ActiveX control)
This Is the latest version of the Data control, implemented As an ActiveX control.

Data Bound Controls
There are 7 intrinsic controls And 16 ActiveX controls which recognize databases.

ComboBox
Here are the three versions that are available With VB, And some comments On how To decide which one To use.

 * ComboBox
 This Is the original, intrinsic, version of the control. Use it whenever possible To keep down the size of your application.
 * DataComboBox
 This Is Microsoft 's most recent rendition of a combo control.
 * DBCombo
 Left over from VB5, you can forego using this one In favor of the newer DataCombo control.

List
Here are the three versions that are available With VB, And some comments On how To decide which one To use.

 * ListBox
 This Is the original, intrinsic, version of the control.
 * DataList
 This Is Microsoft 's most recent rendition of a list control.
 * DBList
 Left over from VB5, you can forego using this one In favor of the newer DataList control.

Grid
There are actually four versions of a grid control that come With VB, but only three of them can be databound. Here are the three versions And some comments On how To decide which one To use.

 * DBGrid
 The olders version that came With VB5. You 'll have to find it on the VB CDROM because it doesn't get automatically installed.
 * FlexGrid
 Also a VB5 version of the grid control. It does Not support editing of the bound Data .
 * Heirarchical FlexGrid
 Newest version of the VB5 FlexGrid And still does Not support editing of the bound Data .

Other Data - Aware Controls
These intrinsic controls can also be bound To fields In a recordset:
- checkbox
- combobox
- image control
- label
- listbox
- picturebox
- textbox

These ActiveX controls are also Data - aware
00 ADO Data control
01 DataComboBox
02 DataGrid
03 DataList
04 DataRepeater
05 DateTimePicker
06 DBCombo
07 DBGrid
08 DBList
09 ImageCombo
10 MaskedEdit
11 MonthView
12 MSChart
13 MSHFlexGrid
14 MSFlexGrid
16 RichTextBox
24 SQL

..SQL - Structured Query Language
SQL Is an industry standard language For querying a database - With the purpose To either retreive Data Or To modify
the Data In the database. SQL Is intended To provide a plain - English method of accessing a database And To avoid
the need For custom programming.

An SQL query Is a text String which tells VB what To include In a recordset Or what actions To take against the Data
In a recordset. Using SQL really does simplify the code you have To Write In an application that utilizes databases.
You can even Write SQL queries which will modify many records In a Single operation. Once I understood the basics,
the use of SQL hit Me Like a revelation. It 's easily one of the top 5 features of VB's database handling capabilities!

Sample SQL Queries

"Select * From Title Where [Year Published] < 1889"
"Delete From Titles Where [Year Published] < #1/1/1889#"
"Select Name, Picture From Authors Where Date_of_Birth = #2/1/1947#"
"Select * From Employees"
"Select [First Name], [Last Name] From Employees"
"Select Employees, Department, SupvName From Supervisors, Employees Where Employees.Department = Supervisorts.Department"
"Select Distinct [Last Name] From Employees"
"Select [Last Name], Salary From Employees Where Salary > 2100"
"Select * From Orders Where [Shipped Date] = #5/12/93#"
"Select [Product Name], Sum ([Units in Stock]) From Products Group By [Product Name]"
"Select * From Employees Order By [Last Name], Asc"
"Select [Last Name], [First Name] From Employees Order by 2 Asc"
"Select [Last Name], Salary From Employees Order By Salary, Desc, [Last Name]

Three things To note about the examples:

- "*" Is used To denote all fields
- Dates are enclosed by pound signs, Like this: "#2/1/1947#"
- Fields With multi - part names which include spaces are enclosed In brackets: []

To use SQL queries, Set the RecordSource Property of a Data control To an SQL
statement such As those above And refresh the control Like this:

 Data3.RecordSource = "SELECT * FROM Agency ORDER BY [City]"
 Data3.Refresh

Just make sure that any references To fields match those contained In the actual
database. Doing so will create a recordset whose content will match the constraints
described by the SQL statement.

First of all, there are 5 parts To an SQL statement which you should recognize:

 Command Clauses Predicates Operators Aggregate Functions
 Create From Distinct And Avg
 Drop Where Top Or Count
 Alter Group By Not Sum
 Select Having Between Max
 Insert Order By Like Min
 Update In
 Delete

With a little inspection you can pretty much guess what Each of these pieces of an SQL statement
can Do . However, here are a couple which you 'll not want to miss and which I use pretty regularly.
Don 't miss the last one in my list, which is a very easy way to sort a recordset!

Select
 This Is the most basic command which tells VB which fields To show In the recordset.
Delete
 Simple, but very powerful means of deleting many records at one time.
From
 Defines the Table from which the fields will be extracted.
Where
 Precedes the conditions by which records are selected from the database
Order By
 Sorts the records by any combination of fields you chose.
25 Limitations

..VB has some specific limitations To keep In mind As code Is written

Variable names 255 characters
Control names 40 characters
Controls per form 254 names (control Array counts As one name)
Control Array index 32,767
Nested controls 25 levels
Listbox elements 32K items, 1024 bytes max per item
Textbox 64K characters
Code per form 65,534 lines (applies To Class And standard modules As well)
Code per procedure 64K lines
DLL declarations per Module 1500
UDT variable size 64K
26 Summary of functions

'Functions available within VB can be broadly broken into the following categories:

'Strings Files Folders Declarations
'Date/Time Registry Misc Arrays
'Math/Logic Error Handling Flow Control

'Strings
Left Mid String
Right Chr InstrRev
Trim Len Asc
LTrim Lset Space
RTrim Rset Replace
Ucase Format StrComp
Lcase Instr StrReverse
FormatCurrency StrConv
FormatDateTime
FormatNumber
FormatPerCent

'Files / Folders
Dir FileDateTime FreeFile Get Line Input
ChDir FileLen Open Put Write
MkDir FileCopy Close Seek Print
ChDrive Lock Reset Input Spc
CurDir UnLock Lof Loc Tab
Name GetAttr Eof
Kill SetAttr Width
RmDir FileAttr

'Declarations
Sub Call Set
Function CallByName Let
Dim PropertyGet Event
Redim PropertySet ArrayName
Static PropertyLet Implements
Public Option Explicit Friend
Private Option Private Enum
Const Option Compare TypeName
Declare Type ...End Type VarType
Is GetObject DefType.
 CreateObject
 GetAutoServerSettings

'Date/Time
Date MonthName
Time WeekDayName
Now Day
Timer Hour
DateAdd Minute
DateDiff Second
DateSerial TimeSerial
DateValue TimeValue
Year WeekDay
Month

'Registry
GetSetting
SaveSetting
DeleteSetting
GetAllSettings

'Miscellaneous
MsgBox Beep Load
DoEvents InputBox Unload
Shell AddressOf SavePicture
Command RaiseEvent LoadPicture
Environ Load LoadResData
RGB Me LoadResString
QBColor SendKeys AppActivate

'Arrays
Option Base
Erase
Dim
Redim
Ubound
Lbound
Filter
Array

'Math/Logic
--
Hex Rnd Sqr Mod
Oct Sgn Abs And
Val Sin Atn Or
Round Cos Log Xor
Int Tan Not
Fix Randomize Eqv
Partition Like
Round Imp
CInt ... Is
Format
FormatNumber
FormatPerCent

'Error Handling
On Error
Resume
Resume Next
Resume Line

'Flow Control
While (cond)
...
Wend

Do While | Until (cond)
...
Loop While | Until (cond)

For Each X In Collection| Array
...
Next X

For i = 1 To j Step k
...
Next i

If (expression) Then
...
End If

Select Case (expression)
 Case (cond)
 Case (cond)
End Select
27 Windows API

'API - Application Programming Interface

'When Microsoft wrote Windows they put a huge amount of code into procedure libraries
'which programmers can access. No matter which language you're using (VB, C++, ...) you
'can use these files (called the Windows Application Programming Interface, or API) to
access the pre - written code To expand the power of your application.

'Windows has hundreds of files you can access, but the three most often used files are:
'- user32.dll controls the visible objects that you see on the screen
'- gdi32 home of most graphics oriented API
'- kernel32.dll provides access to low level operating system features

'Using procedures from other files is almost exactly the same as using procedures from within
'your own program. The one big difference is that you must tell your application which file the
'procedure is contained in. You must do this for each external procedure you plan to use.
'Telling VB about the procedure you want to use is known as "declaring" the procedure and
'the code to declare a procedure is as follows:

Declare Function ExitWindowsEx Lib "user32" (ByVal uFlags As Long , ByVal dwReserved As Long) As Long

'Let's take apart the declaration statement:

- Declare
'This is reserved word that VB uses to begin a declaration. There is no alternative - you have to use it.

- Function
'Also a reserved word, but in this case it distinguishes between a SUB procedured and a FUNCTION
'procedure. The API use Function procedures so that they can return a value to indicate the results
'of the action. Although you can discard the returned value, it's also possible to check the return value
'to determine that the action was successfully completed. completed. alternative - you have to use it.

- ExitWindowsEx
'Inside each DLL is a list of the procedures that it contains. Normally, in a VB declaration statement you
'simply type in the name of the procedure just as it is named in the DLL. Sometimes, the DLL true name
'of the procedure may be a name that is illegal in VB. For those cases, VB allows you to put in the text
'string "Alias NewProcedurename" right behind the filename. In this example, VB would make a call to
'the procedure by using the name "NewProcedureName".

- Lib 'user32'
'Here's where you tell VB which file the procedure is in. Normally you would put "user32.dll", showing the
'extension of the procedure library. For the special case of the three Windows system DLLs listed above,
'the API will recognize the files when simply named "user32", "kernel32", and "gdi32" - without the DLL
'extensions shown. In most other cases you must give the complete file name. Unless the file is in the
'system PATH, you must also give the complete path to the file.

- (ByVal uFlags As Long ...)
'Exactly like VB procedures, Windows API functions can have a list of arguments. However, while your
'VB procedures often use arguments passed by reference (i.e., their values can be changed), most
'Windows API require that the arguments be passed by value (i.e, a copy of the argument is passed
'to the DLL and the originial variable cannot be changed).

'Also, you'll note that a constant or variable is normally used as the argument for an API call. It's
'technically acceptable to simply use a number for an argument but it is common practice among
'experienced programmers to create constants (or variables) whose name is easy to remember and
'then to use those in the argument list. When you're reading or debugging your code later, the use
'of these easy to read constant/variable names makes it much easier to figure out what went wrong!

- As Long
'This is exactly like the code you use to create your own functions. Windows API are functions which
'return values and you must define what type of variable is returned.

'Concerns
'Because the API code executes outside the VB program itself, your own program is susceptable to error
' in the external procedure. If the external procedure crashes, then your own program will crash as well. It
'is not un-common for an API problem to freeze your system and force a reboot - casuing loss of data
And/ Or code.

'Here are several issues/comments about using API which you will want to be aware of:

'Declare
'- DECLARE in standard module are PUBLIC by default and be used anywhere in your app
'- DECLARE in any other module are PRIVATE to that module and MUST BE marked PRIVATE
'- Procedure names for API are CASE-SENSITIVE

'ALIAS
'- Is the "real" name of the procedure as found in the DLL
'- If the API uses string, you MUST use ALIAS with "A" to specify the correct character set (A=ANSI W=UNICODE)
'- WinNT supports W, but Win95/Win98 do not
'- Some DLLs have illegal VB names, so you must use ALIAS to rename the procedure
'- Can also be the ordinal number of the procedure

'Variable Type
'- Very few DLLs recognize VARIANT
'- ByRef is VB default
'- Most DLLs expect ByVal
'- In C documentation, C passes all arguments except arrays by value
'- AS ANY can be used but it turns off all type checking

'Strings
'- API generally require fixed length strings
'- Pass string ByVal means passing pointer to first data byte in the string
'- Pass string ByRef means passing memory address to another memory addresss which refers to first data byte in the string
'- Most DLLs expect LPSTR (ASCIIZ) strings (end in a null character), which point to the first data byte
'- VB Strings should be passed ByVal (in general)
'- VB uses BSTR strings (header + data bytes) - BSTR is passed as a pointer to the header
'- DLL can modify data in a string variable that it receives as an argument - WARNING: if returned value is longer than passed value, system error occurs!
'- Generally, API do not expect string buffers longer than 255 characters
'- C & VB both treat a string array as an array of pointers to string data
'- Most API require you to pass the length of the string and to fill the string wih spaces

'Arrays
'- Pass entire array by passing the first element of the array ByRef
'- Pass individual elements of array just like any other variable
'- If pass pass binary data to DLL, use array of Byte characters

'Passing a null value
'- To pass a null value - zero-length string ("") will not work
'- To pass a null value - use vbNullString
'- To pass a null value - change Type to Long and then use 0&

'Window Handle
'- A handle is simply a number assigned by Windows to each window
'- In VB, the handle is the same as the property hWnd
'- Handles are always Long variable types

'Callbacks
'- Some API can run one of you own VB functions. Your VB function is called a "Callback"
'- Callback functions must be in a module. They cannot be in a form.
'- Use AddressOf to pass a user-defined function that the DLL procedure can use
'- Must have specific set of arguments, AS DEFINED by the API procedure
'- Passed procedure must be As Any or As Long

'Subclassing
'- All windows work by processing messages from the Windows operating system
'- You can change how a window responds to a message by intercepting the message
'- To intercept a message, use the API SetWindowsLong

'Miscellaneous
'- Control properties MUST be passed by value (use intermediate value to pass ByRef)
'- Handles - always declare as ByVal Long
'- Variant - to pass Variant to argument that is not a Variant type, pass the Variant data ByVal
'- UDT - cannot be passed except as ByRef

28 ASCII Table

..
0 - 9 48 - 57
A - Z 65 - 98
a - z 97 - 122

Tab 9 Tab
LF 10 Line feed
CR 13 carriage Return
Space 32 Space
! 33 exclamation
" 34 Double quote
35 pound sign
$ 36 dollar sign
% 37 percent sign
& 38 ambersand
' 39 Single quote
(40 Left parenthesis
) 41 Right parenthesiis
* 42 asterisk
+ 43 plus sign
, 44 comma
- 45 minus sign
. 46 period
/ 47 forward slash

: 58 colon
; 59 semi - colon
< 60 less than
= 61 equal sign
> 62 greater than
? 63 question
@ 64 at sign

{ 123 Left curly bracket
| 124 pipe
} 125 Right curly bracket
~ 126 tilde

Codes 0 - 127
Code / Char Code / Char Code / Char Code / Char
0 < NUL > 32 < space > 64 @ 96 `
1 < SOH > 33 ! 65 A 97 a
2 < STX > 34 " 66 B 98 b
3 < ETX > 35 # 67 C 99 c
4 < EOT > 36 $ 68 D 100 d
5 < ENQ > 37 % 69 E 101 e
6 < ACK > 38 & 70 F 102 f
7 < BEL > 39 ' 71 G 103 g
8 < BS > 40 (72 H 104 h
9 < HT > 41) 73 I 105 i
10 < LF > 42 * 74 J 106 j
11 < VT > 43 + 75 K 107 k
12 < FF > 44 , 76 L 108 l
13 < CR > 45 - 77 M 109 m
14 < SO > 46 . 78 N 110 n
15 < SI > 47 / 79 O 111 o
16 < DLE > 48 0 80 P 112 p
17 < DC1 > 49 1 81 Q 113 q
18 < DC2 > 50 2 82 R 114 r
19 < DC3 > 51 3 83 S 115 s
20 < DC4 > 52 4 84 T 116 t
21 < NAK > 53 5 85 U 117 u
22 < SYN > 54 6 86 V 118 v
23 < ETB > 55 7 87 W 119 w
24 < CAN > 56 8 88 X 120 x
25 < EM > 57 9 89 Y 121 y
26 <> 58 : 90 Z 122 z
27 < Sub > 59 ; 91 [123 {
28 < ESC > 60 < 92 \ 124 |
29 < GS > 61 = 93] 125 }
30 < RS > 62 > 94 ^ 126 ~
31 < US > 63 ? 95 _ 127 < DEL >
29 Collections

'Collections are objects which can contain many other objects, not necessarily
'of the same type. Limitation - collections cannot contain UDTs.

Dim MyCollection As New Collection

'Collections have these properties/methods:
..Add 'add an item to the collection
.Count 'number of objects in the collection
.Item 'reference to the object in the collection
.Remove 'removes the item from the collection

'members of a collection have an index and a key
Key 'unique string value
Index 'Long integer between 1 and number of items in the collection

'refer to an item in a Collection in these ways:
MyCollection(Key)
MyCollection(Index)
'or
MyCollection.Item(Key)
MyCollection.Item(Index)

'iterate over a collection in two ways:
For i = 1 To MyCollection.Count
 'do something with MyCollection(i)
Next i

Dim X As Object
For Each X In MyCollection
 ... Do something With X
Next

'set a reference to an object in a collection this way
Set MyVar = MyCollection.Item(Index)

'to remove an item from a collection
MyCollection.Remove "Name"
MyCollection.Remove 2

'to clear a collection
Set MyCollection = Nothing
 30 Subclassing

'The Windows Operating System (OS) manages the various windows of your applications.
'Each window is given a unique id number (windows handle, also known as hWnd). The
'OS continually monitors these windows for signs of activity or events - such as a mouse
'click or button press. When an event occurs the OS determines which window(s) it affects
'and sends a message to those windows. The windows respond according to the code
'the programmer has included in the project that contains those windows.

'VB either handles the message for you, or it exposes the message to you as an Event
'procedure, which is where you put your code to respond to the event.

'Each window has a message handler - code that will respond to the OS message.
'The message handler is called a WindowProc - short for window procedure.

'When a window is subclassed, you write a new window procedure that is inserted
'between the OS and the original window procedure.

'Your new procedure is responsible for deciding which messages to handle or which
'messages you want to pass on to the default WindowProc.

'Example of a custom WindowProc - put this in a .BAS module!

Public Declare Function CallWindowProc& Lib "user32" Alias "CallWindowProcA" (ByVal lpPrevWndFunc&, ByVal hWnd&, ByVal Msg&, ByVal wParam&, ByVal lParam&)
Public Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA" (ByVal hWnd&, ByVal nIndex&, ByVal dwNewLong&) As Long
Const GWL_WNDPROC = - 4
Public lpPrevWindowProc As Long

Public Function WindowProc(ByVal hWnd As Long , ByVal iMsg As Long , ByVal wParam As Long , ByVal lParam As Long) As Long
'this is the WindowProc that will be used to reply to Windows messages - takes over for the original WindowProc
 If iMsg = TargetMessage
 'do something of our own
 WindowProc = 0&
 Exit Function ' exit the function - preventing VB from getting the message - delete this to let both WindowProc run
 End If
 'pass all other messages on to VB and then return the value to Windows
 WindowProc = CallWindowProc(lpPrevWindowProce, hWnd, iMsg, wParam, lParam) 'passes parameters unchanged to original Windows message handler
End Function

'in load event of form, take over control of messages - save pointer to the original WindowProc
lpPrevWindowProc = SetWindowLong(hWnd, GWL_WNDPROC, AddressOf WindowProc) 'this is a CallBack

'in unload event of form - return control to the original WindowProc
Call SetWindowLong(hWnd, GWL_WNDPROC, lpPrevWindowProc)
31 Distribution

..Normally a programmer creates a Single setup / distribution
file which the user runs To install the application.

The setup file usually performs the following:
- creates required folder Structure
- installs application EXE
- installs applicaton - specific files (Data , help, ...)
- create Registry entrites required by the application
- installs the VB runtime files
- installs any OCXs / DLLs that are Not a part of the runtime Or the system OS

In addition To the EXE file that you create during compilation,
VB requires that some specific files be present On the PC before a
user can use the application.

VB Runtime Files
The intrinsic controls, functions, And other features of VB
are distributed across several files - called the VB runtime files.
These features are Not included In the compiled EXE.
The VB run - time files must be On a PC before it can run VB
programs.

If a user has previously installed the VB run - time files, the files
Do Not have To be re - installed. However, the VB programmer
usually has To assume that the files are Not available, And include
them In his setup file.

The runtime files are:
msvbvm60.dll
stdole2.tlb
oleaut32.dll
olepro32.dll
comcat.dll
asycflt.dll
ctl3d32.dll

OCXs
Controls placed In an application, such As the RichTextBox Or
the Treeview, exist In separate files. They are Not part of the VB
run - time files And must be included In the setup file.

Installation Tools
VB comes With it 's own Setup Wizard for creating the setup
file, but most folks find the tool To be of limited value. There
are other free tools On the market which Do a better job.

I highly recommend Inno Setup at http: // www.jrsoftware.org / isinfo.php

I have also use Install Creator And found it To be excellent http: // www.clickteam.com
32 Top 100

..Most used VB code
..Search On 'Top100' to view the full snippets

Applications
 Associate an extension With the app
 Create a shortcut To your app In any folder
 Create desktop shortcut
 Dialog - color - using API
 Dialog - file - using API
 Dialog - folder - using APi
 Dialog - font - using API
 Open Help file
 Put app icon In system tray
 Put app In Explorer context menu
 Put app In SendTo menu
 Start New application And wait For it To finish
 Startup With Windows (use wshom)
 Test If application Is running within IDE
Arrays
 Cycle through an Array
 Randomly shuffle an Array
 Remove element from Array by content
 Remove element from Array by position
 Search an Array
Clipboard
 Copy image To clipboard
 Copy text To clipboard
Controls
 All - automatically highlight content On focus
 All - capture any key
 All - force lower Case As keys are entered
 ComboBox - create MRU For dropdown list
 Imagelist - add images at run time
 Richtextbox - find And replace
 Richtextbox - first visible line / position of 1st Char On the line
 Richtextbox - merge contents of two richtextboxes
 Richtextbox - prevent flicker of richtextbox during reposition
 Richtextbox - word wrap
 Toolbar - responding To button selection
 TreeView - traverse the tree
Date - Time
 Time - elapsed time between 2 dates
 Timer - milliseconds between 2 events
Files Binary
 Read / Write Data To a specific location within the file
 Read / Write entire file at once
 View In Hex Format
Files Text
 Read text file all at one time
 Read text file one line at a time
 View text file content
Files
 Create full pathname
 Extract file name from full path
 File exists
 File properties (size / Date / attributes)
Folders
 Delete a folder And its subfolders
 Folder exists
 Get list of drive letters
 Get Type of drive
 Open DOS window at folder
 Open Window at folder
 Open Windows Explorer at folder
Forms
 Center a form
 Keep form On top
 Set min / max size of form
 Splitter, horizontal (form - based)
 Splitter, horizontal (splitter bar)
Free Controls And Tools
 Free programming tools
Graphics
 Convert between Long , RGB, VB, And Web colors
 Get JPG / GIF / BMP / PNG image size
 Get screen resolution
 Gradient - apply To a picturebox, 2 colors, 4 directions
 Gradient - apply To form, 2 colors, 4 directions
 Gradient - full spectrum
 Overlay an image
 Read / Write / display / convert GIF / JPG / BMP
 Resize an image, keeping aspect ratio
 Screen capture
 Set wallpaper
Internet
 Check For Internet connection
 Create URL shortcut
 Create web page (HTML) from code
 Download file from the web using API
 Download web page (capture As String)
 Get remote file information - size, Date
 Open a web page In Default browser
 Send email using Default app
 Upload file (Freeware EZ - FTP)
 Upload file (Internet Transfer Control)
Math
 Random Integer within range
 Round To 2 decimals
 Round To n decimals
Multimedia
 Play CD (MM control)
 Play sound (API only)
 Play sound (MM control)
 Play video (MM control)
 Record sound (MM control)
Navigation
 List files And folders - API (pattern)
 List files And folders - Dir$ (pattern)
 List files And folders - FSO
 List files And folders - SysFileControls
Printing
 Color printing
 Print images, positioned And scaled
 Print preview
Registry
 Clear application settings from registry
 Edit registry key
 Use registry To save program settings
Security
 Checksum
 Encrypt a file (uses password)
 Encrypt a String (uses password)
Sort
 QuickSort
Strings
 Convert Byte Array To String
 Find text before / between / after two target strings
 Find / replace
 Split String into Array
System
 Get computer name
 Get name of special folders
 Get user name
 Get Windows And System directories
 Get Windows version
 Reboot, restart Or logoff system
 Reboot, restart Or logoff system (XP only)
Source: http://www.garybeene.com
